標準偏差の公式と求め方を徹底解説します!

標準偏差とは?標準偏差の意味と求め方

入力した値の標準偏差を算出します。
値を ” , “(カンマ)で区切って入力後に算出ボタンクリックしてください。

標準偏差はデータのばらつきを指し、
分散の正の平方根により求められるため、
データ数:n、各データ値:xi、平均:μとしたとき、
s=1nΣ(xi – μ)2より

入力データ数(n):

分散(s2):

標準偏差(s):

高校生

計算に困っていたので助かりました!

今回はデータの分散に関する悩みを解説します。

「標準偏差は何を表してるの?」
「標準偏差の求め方は?」


今回は標準偏差に関する悩みを解決します。

高校生

標準偏差が苦手なんですよ…

標準偏差とは、「データの散らばりの度合い」を表す指標の1つです。

分散の正の平方根が標準偏差です。

標準偏差とは?

本記事では、標準偏差の意味と求め方について解説します。

目次

標準偏差の公式

標準偏差とは「データの散らばりの度合いを表す指標」の1つです。

標準偏差とは?

分散の平方根で求めることができます。

分散の公式

変数\(x\)の値が\(x_1,x_2,…,x_n\)で、平均が\(\bar{x}\)のとき
分散\(s^{2}\)は、

\begin{eqnarray}
\displaystyle s^{2}&=&\frac{1}{n}\{(x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+…+(x_{n}-\bar{x})^{2}\}\\
\displaystyle &=&\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^{2}
\end{eqnarray}

もしくは

\[\displaystyle s^{2}=\frac{1}{n}\sum_{i=1}^n x_i^{2} -\bar{x}^{2}\]

標準偏差\(s\)は分散\(s^{2}\)の正の平方根

\[s=\sqrt{s^{2}}\]

分散については「分散とは?分散の意味と求め方」にて解説しています。

あわせて読みたい
分散とは?分散の公式と求め方を解説!標準偏差や共分散との違いは? 入力した値の分散を算出します。 値をカンマ(,)で区切って入力後に算出ボタンクリックしてください。 分散は「平均からの差」の二乗平均を指すので、データ数:n、各デ...

標準偏差の求め方

標準偏差\(s \)は分散\(s^2\) を使って以下のように表されます。

標準偏差の求め方

標準偏差は「分散の正の平方根」なので、まずは分散を求める必要があります。

標準偏差の求め方

  1. 平均値を求める
  2. 偏差を求める
  3. 分散(偏差の2乗平均)を求める
  4. 分散の平方根を求める

それでは、例をもとに一緒に標準偏差を求めてみましょう。

あるクラスで数学Ⅰのテストを行いました。

標準偏差の求め方

1.平均値を求める

まずは平均値を求めます。

\[\displaystyle \frac{30+40+50+80+100}{5}=60\]

標準偏差の求め方

2.偏差を求める

偏差とは「データと平均値との差」を指します。

偏差を求める

偏差=(データ値)-(平均値)

\begin{eqnarray}
30-60&=&-30\\
40-60&=&-20\\
50-60&=&-10\\
80-60&=&20\\
100-60&=&40
\end{eqnarray}

標準偏差の求め方

偏差について別の記事でまとめました。
偏差値とは?偏差値の意味と求め方をズバリ解説します!

あわせて読みたい
偏差値とは?偏差値の意味と求め方をズバリ解説します! 今回は偏差値に関する疑問を解決していきます。 偏差値って何を表してるの? 標準偏差の求め方は? テスト結果表などに「偏差値」と記載されている数字を見たことがあり...

3.分散を求める

分散は「偏差の2乗平均」で求めることができます。

\[\displaystyle \frac{900+400+100+400+1600}{5}=680\]

分散の意味や求め方は別の記事で詳しくまとめています。

あわせて読みたい
分散とは?分散の公式と求め方を解説!標準偏差や共分散との違いは? 入力した値の分散を算出します。 値をカンマ(,)で区切って入力後に算出ボタンクリックしてください。 分散は「平均からの差」の二乗平均を指すので、データ数:n、各デ...

4.分散の平方根を求める

標準偏差の求め方

分散:680の正の平方根を求めます。

\[\sqrt{680} ≒ 26.08\]

したがって、標準偏差は26.08

これで標準偏差を求めることができました。

高校生

標準偏差の求め方は分かったけど、そもそも標準偏差を求めるメリットは何ですか?

シータ

標準偏差を求めるメリットを解説していくよ!

標準偏差のメリット

標準偏差を求めるメリットは「データ全体のざっくりとした分布」が分かることです。

例えば、あるテスト結果の分散が680と言われてピンと来ますか?おそらく誰も分からないでしょう。

しかし、標準偏差が26.08だと分かると、受験者の68%が”平均点±26.08点”の中にいることを示します。

標準偏差のメリット

図のように、正規分布の場合、平均値±標準偏差中に観測データが含まれる確率は68.3%になります。
これが±標準偏差の2倍、3倍になるとさらに確率は上がります。

範囲範囲内に収まる確率
平均値±標準偏差68.3%
平均値±(標準偏差×2)95.4%
平均値±(標準偏差×3)99.7%

標準偏差と分散

標準偏差と分散は何が違うのでしょうか。

ざっくりした説明ですが表している単位が異なるのです。

例えばお肉の重さについて調べます。このとき使う単位をグラム\(g\)だとしましょう。

分散はデータの2乗平均なので、求めた分散の単位は\(g^2\)になります。

その一方で、標準偏差は分散の正の平方根なので単位が\(g\)になっています。

したがって、データの散らばりの度合いを表すときは、分散の\(g^{2}\)よりも標準偏差で表した方が分かりやすくなります。

標準偏差と分散

標準偏差を求めることで、ほとんどのデータが「平均値±標準偏差」に収まっていることが分かります。

標準偏差<練習問題>

標準偏差<練習問題>

標準偏差の意味を理解したところで、練習してみましょう。

先程のテストをBクラスでも行った結果、このようになりました。

標準偏差<練習問題>

Bクラスの標準偏差を求めましょう

標準偏差の求め方を振り返ります。

標準偏差の求め方

  1. 平均値を求める
  2. 偏差を求める
  3. 分散(偏差の2乗平均)を求める
  4. 分散の平方根を求める

1.平均値を求める

\[\displaystyle \frac{40+55+60+70+75}{5}=60\]

平均値:60点

2.偏差を求める

\begin{eqnarray}
40-60&=&-20\\
55-60&=&-5\\
60-60&=&0\\
70-60&=&10\\
75-60&=&15
\end{eqnarray}

3.分散を求める

\begin{eqnarray}
\displaystyle s^{2}=\frac{(-20)^2+(-5)^2+0+10^2+15^2}{5}\\
\displaystyle &=&\frac{400+25+0+100+225}{5}\\
\displaystyle &=&\frac{750}{5}\\
&=&150
\end{eqnarray}

分散:150

4.分散の平方根を求める

分散が150なので、

\(\sqrt{150} ≒ 12.25\)

解答標準偏差 12.25
高校生

自分で標準偏差を求められるようになりました!

シータ

いつでも求められるように定期的に確認しよう!

標準偏差 まとめ

今回はデータの分析から標準偏差についてまとめました。

標準偏差 まとめ

標準偏差とは?
データの散らばりの度合いを表す指標

分散の公式

標準偏差

変数\(x\)の値が\(x_1,x_2,…,x_n\)で、平均が\(\bar{x}\)のとき
分散\(s^{2}\)は、

\begin{eqnarray}
\displaystyle s^{2}&=&\frac{1}{n}\{(x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+…+(x_{n}-\bar{x})^{2}\}\\
\displaystyle &=&\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^{2}
\end{eqnarray}

もしくは

\[\displaystyle s^{2}=\frac{1}{n}\sum_{i=1}^n x_i^{2} -\bar{x}^{2}\]

標準偏差\(s\)は分散\(s^{2}\)の正の平方根

\[s=\sqrt{s^{2}}\]

標準偏差は「分散の正の平方根」なので、まずは分散を求める必要があります。

標準偏差の求め方

  1. 平均値を求める
  2. 偏差を求める
  3. 分散(偏差の2乗平均)を求める
  4. 分散の平方根を求める

標準偏差に合わせて「共分散」や「相関係数」についても確認しておきましょう。
まだチェックしていない方はぜひご覧ください。

あわせて読みたい
共分散の公式と求め方を2つ解説!図を使って考えてみよう! 入力した値の共分散を算出します。 値をカンマ(,)で区切って入力後に算出ボタンクリックしてください。 X: Y: 共分散は「Xの偏差×Yの偏差」の平均で表され、 sxy=1nΣ(...
あわせて読みたい
相関係数の意味と求め方を分かりやすく解説! 入力した値の相関係数を算出します。 値をカンマ(,)で区切って入力後に算出ボタンクリックしてください。 X: Y: 2変量データの相関関数 r は以下の公式で表される。 r...

それでは最後まで読んでくださりありがとうございました。

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

当サイトの運営者。
指導歴8年目の数学講師。大学1年生から塾講師バイトを始め、これまで300名以上を指導。オンライン家庭教師のご依頼・お申し込みは、こちらの公式アカウントから承っております。詳しいプロフィール

コメント

コメントする

目次