数と式まとめ【完全攻略】

数と式まとめ【完全攻略】

「数と式の単元が苦手」
「数と式の復習がしたい」
今回は数と式のこんな悩みを全部解決します。

高校生

式の展開とかが苦手で…

数学Ⅰ「数と式」の基礎が詰まった「完全攻略」記事を書きました。

「数と式」で学習する内容はこれから習う高校数学の基礎となるものです。

さっそくに高校数学に苦手意識を持っている方も多いと思いますが、じっくり向き合って苦手を解消させておきましょう。

本記事では、数学ⅠAの数と式について徹底解説します。

長い記事ですがゆっくり読めば数と式の総復習ができるようになっています。

数と式

目次

単項式と多項式

まず単項式と多項式の定義を確認します。

単項式の例

単項式
数や文字およびそれらを掛けただけで表される式
例)5,xy,2a,(-3abc)

多項式
単項式の和として表される式
例)x+y ,2ab-3a+b

つまり、多項式はいくつかの単項式をもっている式です。

また、単項式と多項式はどちらも整式の1つです。

単項式と多項式の違いについて詳しく知りたい方
単項式と多項式の違い

あわせて読みたい
単項式と多項式の違いは?それぞれの意味を解説!《数と式》 今回は数Ⅰの「数と式」から、単項式と多項式についての悩みを解決していきます。 単項式と多項式の違いがイマイチ分からなくて教えて欲しいです。 さっそくですが、まず...

同類項でまとめる

同じ文字をもつ項を同類項と呼びます。

同類項をまとめるとは?

同類項をまとめるとは「整式の同じ文字を持つ項を1つにまとめること」を指します。

同類項のまとめ方は別の記事で詳しく解説しています。
同類項でまとめるとは?整式の整理を解説!

あわせて読みたい
同類項でまとめるとは?整式の整理を解説! 今回は同類項に関する疑問を解決していきます。 同類項って何? 同類項のまとめ方は? 単項式と多項式を学習すると、「同類項をまとめなさい」という問題が出ます。 同...

指数法則

指数法則を理解していないと、式の展開などで苦戦します。

指数法則には覚えておきたい7つの公式があります。

指数法則の7つの公式

\(a≠0,b≠0\)で、\(m,n\)が整数の時

  • \(a^{0}=1\)
  • \(\displaystyle a^{-n}=\frac{1}{a^{n}}\)
  • \(a^{m} \times a^{n}=a^{m+n}\)
  • \((a^{m})^{n}=a^{mn}\)
  • \((ab)^{n}=a^{n} b^{n}\)
  • \(a^{m} \div a^{n}=a^{m-n}\)
  • \(\displaystyle (\frac{a}{b})^{n}=\frac{a^{n}}{b^{n}}\)

なぜこのようになるのかは別記事で解説しています。
分数やマイナスにも困らない指数法則の7つの公式

あわせて読みたい
指数法則の重要な公式8選!これで分数やマイナスにも困らない! 「指数の計算ってどうやるんだっけ?」「指数にマイナスがあるときは?」今回は指数法則に関するこんな悩みを解決します。 変な形の指数が出てくると困っちゃって… 指数...

展開の公式

展開の公式は完璧に覚える必要はありません。しかし、自力で計算できるくらいには理解しておきましょう。

3次式の展開

3次式の展開公式について解説します。

(a±b)^{3}の展開公式

\((a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\)
\((a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\)

上で示したように、3乗の展開は少し複雑です。

3次式の展開公式について詳しく知りたい方
3次式の展開公式を徹底解説!

あわせて読みたい
【三乗の公式】(a±b)3乗の展開公式と覚え方を解説! 3乗の展開をします。展開したい式のタイプを選択し、係数の入力後、算出ボタンをクリックしてください。 (ax+b)3 (ax+by)3 a: b: を展開すると、になります。 a の値は0...

(a±b)3乗の展開公式 証明

\((a±b)^{3}\)の展開公式を証明していきましょう。

証明は計算していくだけなのでかなりシンプルです。

・\((a+b)^{3}\)の証明

\begin{eqnarray}
(a+b)^{3}&=&(a+b)^{2}(a+b)\\
&=&(a^{2}+2ab+b^{2})(a+b)\\
&=&a^{3}+3a^{2}b+3ab^{2}+b^{3}\\
\end{eqnarray}

・\((a-b)^{3}\)の証明

\begin{eqnarray}
(a-b)^{3}&=&(a-b)^{2}(a-b)\\
&=&(a^{2}-2ab+b^{2})(a-b)\\
&=&a^{3}-3a^{2}b+3ab^{2}-b^{3}\\
\end{eqnarray}

上の2つの式は素直に展開していくと展開公式が出てきます。

3次式の因数分解

次は3次式の因数分解について解説します。

公式を見ながら練習していけば段々できるようになります。

3次式の展開公式\((a+b)^3=a^3+3a^2b+3ab^2+b^3\)
\((a-b)^3=a^3-3a^2b+3ab^2-b^3\)
\((a+b)(a^2-ab+b^2)=a^3+b^3\)
\((a-b)(a^2+ab+b^2)=a^3-b^3\)

3次式の因数分解を徹底解説!

あわせて読みたい
3次式の因数分解を徹底解説!  3次式の展開公式があるならば、逆は因数分解公式になります。 因数分解の公式を覚えておけば、展開もできるようになるのでぜひ押さえておきましょう。 今回は因数...

実数とは

実数とは「有理数」と「無理数」の総称です。

多くの高校生が「有理数」と「無理数」の違いに困ると思います。

有理数というのは、分数で表現できる数を指しています。具体的には、以下のように「整数」「有限小数」「循環小数」が含まれています

一方で、無理数とは\(\sqrt{3}\)や\(\pi\)などの循環しない数のことです。

\(\sqrt{3}=1.7320508…\)
\(\pi =3.141592…\)
もっと詳しく知りたい方はこちら
実数とは?ルートは実数?実数の定義を解説!

あわせて読みたい
実数とは?実数に含まれるもの&実数でないものを具体例で解説 「どれが実数か分からない」「実数の具体例を教えて欲しい」 今回は実数に関するこんな悩みを解決します。 どれが実数なのかよく分かっていなくて… 数学では、"実数"と...

2重根号の計算

二重根号の外し方を伝授していきます。

外し方法はとっても簡単!

この公式を覚えていれば、問題なしです。

二重根号の外し方

二重根号とは?二重根号の外し方を例題を用いて解説!

あわせて読みたい
二重根号の外し方を解説!たったこれだけで簡単に外せる! 今回は数Ⅰの「数と式」から、二重根号についての悩みを解決していくよ! 二重根号の外し方がイマイチ分からなくて、ぜひ教えて欲しいです。 こんにちは!数学講師のゆう...

命題と条件

命題とは「正しいか正しくないかが1つに定まる文章または式」を指します。

命題の例

  • \(x=3\)ならば\(2x=6\)である
  • 4は偶数である
  • ライオンは生き物である

一方で、以下のような文章は命題とは言えません。

命題ではない例

  • 1000は大きい数である
  • 車は速い
  • 東京はすごい

なぜなら、大きいや速いというのは比べるものによって変わる概念だからです。

このような正しい正しくないが明確に決められない文章や式を命題とは言えません。

命題と合わせて「逆・裏・対偶」についても解説しているのでぜひご覧下さい。
命題とは?命題の意味と「逆・裏・対偶」の関係

あわせて読みたい
命題とは?命題の意味と「逆・裏・対偶」の関係 今回は命題と条件に関する悩みを解決していきます。 命題ってなに? 否定とは? 逆、裏、対偶の意味が曖昧 ここが曖昧な生徒が多いので、一緒にしっかりと理解をしてお...

必要条件・十分条件

まず、必要条件・十分条件の定義を確認しましょう。

必要条件・十分条件
高校生

pとかqで説明されても分からないよ

シータ

そうだよね。
具体的な命題で解説していくよ

真の命題「リンゴならば果物」を例にして考えます。

リンゴならば果物である」という命題を矢印で表すと「リンゴ⇒果物」です。

リンゴ果物


ポイント

  • 矢印が出ているほうが十分条件
  • 矢印を受けているほうが必要条件

つまり、リンゴ⇒果物 において

  • 「リンゴ」は「果物」の十分条件
  • 「果物」は「リンゴ」の必要条件

ここで注意点が1つ
命題が逆になると必要条件・十分条件も逆になります。

つまり、「\(x=1\)」は「\(x+3=4\)」の十分条件でもあり、必要条件でもあります。

このような場合、「\(x=1\)」は「\(x+3=4\)」の必要十分条件といいます。

高校生

矢印が出ている方が十分条件なんだね

命題の必要条件・十分条件について詳しく知りたい方
必要条件・十分条件とは?違いと見分け方を分かりやすく解説!

あわせて読みたい
必要条件・十分条件とは?違いと見分け方を分かりやすく解説! 「必要条件・十分条件の判断が分からない」「それぞれの意味や見分け方が分からない」今回は必要条件・十分条件についての悩みを解決します。 必要条件とかが本当に分か...

数と式 まとめ

今回は数と式についてまとめました。

数と式の記事を網羅的にまとめましたが、詳しいポイントは各単元の記事で解説しています。

そちらもぜひ参考にしてください。

数と式

数と式以外の単元についてもまとめ記事を出しています。

教科書に内容に沿った解説記事を挙げているので、定期試験前に確認してください。

それでは最後までご覧いただきありがとうございました。

みんなの努力が報われますように!

記事トップに戻る

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

当サイトの運営者。
指導歴8年目の数学講師。大学1年生から塾講師バイトを始め、これまで300名以上を指導。オンライン家庭教師のご依頼・お申し込みは、こちらの公式アカウントから承っております。詳しいプロフィール

コメント

コメントする

目次