ããŠãŒã¯ãªããã®äºé€æ³ã®ããæ¹ãåãããªãã
ã1次äžå®æ¹çšåŒãèŠæã
ä»åã¯ãŠãŒã¯ãªããã®äºé€æ³ã«é¢ããæ©ã¿ã解決ããŸãã
ãŠãŒã¯ãªããã®äºé€æ³ãå šç¶ã§ããªããŠâŠ
ãŠãŒã¯ãªããã®äºé€æ³ã¯ã2ã€ã®æŽæ°ã®æå€§å ¬çŽæ°ãæ±ãããšãã«äœ¿ããŸãã
æå€§å ¬çŽæ°ã®æ±ãæ¹ã¯éåžžã«ç°¡åã§ãã
2379ãš3355ã®æå€§å ¬çŽæ°ãæ±ãããšã
ãŠãŒã¯ãªããã®äºé€æ³ã§ã¯
ïŒã315ãš70ã®æå€§å ¬çŽæ°ã
ïŒã70ãš35ã®æå€§å ¬çŽæ°ã
ãšããèãæ¹ãçšããŠèšç®ããŠããŸãã
æ¬èšäºã§ã¯ããŠãŒã¯ãªããã®äºé€æ³ã®ããæ¹ã蚌æã«ã€ããŠè§£èª¬ããŠããŸãã
ãŠãŒã¯ãªããã®äºé€æ³ã®è©³ããæé ã1次äžå®æ¹çšåŒã®å¿çšã«ã€ããŠã解説ããŠããã®ã§ããã²æåŸãŸã§èªãã§ãã ããã
èšäºã®å 容
ãŠãŒã¯ãªããã®äºé€æ³ãšã¯ïŒ
ãŠãŒã¯ãªããã®äºé€æ³ã¯ã2ã€ã®æŽæ°ã®æå€§å ¬çŽæ°ãæ±ããèšç®æ¹æ³ã§ãã
æå€§å ¬çŽæ°ãšã¯ïŒ
2ã€ä»¥äžã®æŽæ°ã®ããããã®çŽæ°ã®ãã¡ãå
±éã®çŽæ°ãå
¬çŽæ°ãšãããŸãã
å
¬çŽæ°ã®äžã§ãæ倧ã®å
¬çŽæ°ããæ倧å
¬çŽæ°ãšãããŸãã
12ã®çŽæ°ïŒ1,2,3,4,6,12
18ã®çŽæ°ïŒ1,2,3,6,9,12
12ãš18ã®å ¬çŽæ°ïŒ1,2,3,6
ãããã£ãŠã12ãš18ã®æå€§å ¬çŽæ°ã¯6
ãŠãŒã¯ãªããã®äºé€æ³ã®ããæ¹
ãŠãŒã¯ãªããã®äºé€æ³ã®ããæ¹ã解説ããŸãã
315ãš700ã®æå€§å ¬çŽæ°ãæ±ãããšããŸãã
ãŸãã¯å€§ããæ¹ã®æŽæ°ãå°ããæŽæ°ã§å²ããŸãã
ããã§æ±ããäœãã䜿ã£ãŠæ¬¡ã®èšç®ãããŸãã
å²ãæ°ãšäœããå·Šã«ãºã©ããŠãããäžåºŠå²ãç®ãè¡ããŸãã
ãããšãŸãäœããåºãŠããŸããã
ãããäœããåºãªããªããŸã§ç¹°ãè¿ããŸãã
70ã35ã§å²ã£ããšããã§åã2ãšãªããäœããç¡ããªããŸããã
ãããã£ãŠã315ãš700ã®æå€§å ¬çŽæ°ã¯35ãšãªããŸãã
ãããæå€ãšç°¡åã«æå€§å ¬çŽæ°ãæ±ãããããïŒ
ãŠãŒã¯ãªããã®äºé€æ³ã¯èŠãç®ãè€éãªã ãã§ãèšç®ã®æé ã¯ã·ã³ãã«ã ãïŒ
ãŠãŒã¯ãªããã®äºé€æ³ã®å ·äœäŸ
ãŠãŒã¯ãªããã®äºé€æ³ã«æ £ããããã«ãã1å解ããŠã¿ãŸãããã
3355ãš2379ã®æå€§å ¬çŽæ°ãæ±ããŸãããã
ãŸãã¯3355ã2379ã§å²ã£ãŠäœããæ±ããããšããå§ããŸãã
å²ãæ°ãäœãã§ããäžåºŠå²ãäœæ¥ãç¹°ãè¿ããŠãããäœããåºãªããªã£ããšããã§èšç®çµäºã§ãã
ãããã£ãŠã3355ãš2379ã®æå€§å ¬çŽæ°ã¯61ã ãšåãããŸããã
æå€§å ¬çŽæ°ã®èšå·
æå€§å ¬çŽæ°ãè¡šãèšå·ããããŸãã
ã3355ãš2379ã®æå€§å ¬çŽæ°ããšæ¯åæžãã®ã¯å€§å€ãªã®ã§ãç¥ã£ãŠãããšäŸ¿å©ã§ãã
æå€§å ¬çŽæ°ã®èšå·
3355ãš2379ã®æå€§å ¬çŽæ°ã¯61 âã\(gcd(3355,2379)=61\)
æå€§å ¬çŽæ°ã¯\(gcd(x,y)\)ãçšããŠè¡šããŸãã
ãŠãŒã¯ãªããã®äºé€æ³ã®ã¡ãªãã
12ãš18ãªããçŽæ°ããã¹ãŠæžãåºããŠæå€§å ¬çŽæ°ãæ±ããããšãå¯èœã§ãã
ãããã
åé¡
31869169ãš472749749ã®æå€§å ¬çŽæ°ãæ±ãã
ãããªããšçŽæ°ããã¹ãŠæžãåºãã®ã¯äžå¯èœã«è¿ãã§ãã
ãŠãŒã¯ãªããã®äºé€æ³ã¯ã倧ããªæ°ã®æå€§å ¬çŽæ°ãæ±ãããšãã«äŸ¿å©ã§ãã
ãšã¯ãããå ¥è©Šåé¡ã§ãããªã«å€§ããªæŽæ°ã¯ã»ãšãã©ç»å Žããªãã§ãã
倧åŠå ¥è©Šã«ãããŠã¯æå€§å ¬çŽæ°ãæ±ããåé¡ãããïŒäžæ¬¡äžå®æ¹çšåŒ ax+by=1 ã®åé¡ã§ãŠãŒã¯ãªããã®äºé€æ³ã掻çšããŸãã
ãŠãŒã¯ãªããã®äºé€æ³ã¯1次äžå®åŒã®åé¡ã§æŽ»èºãããïŒ
ãŠãŒã¯ãªããã®äºé€æ³ã®èšŒæ
ãŠãŒã¯ãªããã®äºé€æ³ã§ã¯ã
ãå²ãããæ°ãšå²ãæ°ã®æå€§å ¬çŽæ°ãïŒãå²ãæ°ãšããŸãã®æå€§å ¬çŽæ°ã
ãšããèãæ¹ãçšããŠæå€§å ¬çŽæ°ãæ±ããŸãã
ã€ãŸã以äžã®èšç®ã§ã¯ã
ã700ãš315ã®æ倧å
¬çŽæ°ã
ïŒã315ãš70ã®æ倧å
¬çŽæ°ã
ïŒã70ãš35ã®æ倧å
¬çŽæ°ã
ãšãªãã®ã§ã700ãš315ã®æå€§å ¬çŽæ°ã35ã ãšãããã®ã§ãã
ããã§ããªãã700ãš315ã®æå€§å ¬çŽæ°ãïŒã70ãš35ã®æå€§å ¬çŽæ°ããæãç«ã€ã®ãçåãæ±ãåŠçãå€ãã§ãããã
ãããªããªãã«åããŠããŠãŒã¯ãªããã®äºé€æ³ã®èšŒæã瀺ããŸãã
ãŸãã¯ä»¥äžã®ããšã蚌æããŸãã
2ã€ã®æŽæ°\(a,b(aâ¥b>0)\)ã«ã€ããŠaãbã§å²ã£ãäœããrãšãããšããaãšbã®æå€§å ¬çŽæ°ã¯bãšrã®æå€§å ¬çŽæ°ãšçãã
ã蚌æã
aãšbã®æ倧å
¬çŽæ°ãGãšãããšã
\(a=Ga’,b=Gb’ (a’ãšb’ã¯äºãã«çŽ ) \cdots â \)
ãšæžããã
\(a=bQ+r \cdots â¡\)
â¡ã«â ã代å
¥ããŠæŽçãããš
\(G(a’-Qb’)=r\)
\(a’-Qb’=r’\)ãšçœ®ããš
\(r=Gr’\)
ãã£ãŠbãšrã¯Gãå
¬çŽæ°ã«æã€ã
ãŸããâ¡ããbãšrã¯Gãã倧ããªå
¬çŽæ°ãæããªãã®ã§bãšrã®æ倧å
¬çŽæ°ã¯Gã§ããã
ããã§èšŒæçµäºã§ãã
2ã€ã®æŽæ°\(a,b(aâ¥b>0)\)ã«ã€ããŠaãbã§å²ã£ãäœããrãšãããšããaãšbã®æå€§å ¬çŽæ°ã¯bãšrã®æå€§å ¬çŽæ°ãšçãã
ããã¯
ãå²ãããæ°ãšå²ãæ°ã®æå€§å ¬çŽæ°ãïŒãå²ãæ°ãšããŸãã®æå€§å ¬çŽæ°ã
ãæå³ããŸãã
ã€ãŸãããå²ãåãããŸã§ãŠãŒã¯ãªããã®äºé€æ³ãç¶ãããšãã®æåŸã®å²ãæ°ãæå€§å ¬çŽæ°ã§ããããšããããšãèšããã®ã§ãã
ãããã£ãŠã
ã700ãš315ã®æ倧å
¬çŽæ°ã
ïŒã315ãš70ã®æ倧å
¬çŽæ°ã
ïŒã70ãš35ã®æ倧å
¬çŽæ°ã
ãšãªãã700ãš315ã®æå€§å ¬çŽæ°ã35ãšãªããŸãã
ãŠãŒã¯ãªããã®äºé€æ³ãšäžå®æ¹çšåŒ
ãããŸã§ãŠãŒã¯ãªããã®äºé€æ³ã解説ããŸãããã倧åŠå ¥è©Šã§æå€§å ¬çŽæ°ãæ±ããã ãã®åé¡ã¯ã»ãšãã©ãããŸããã
å ¥è©Šã«ãããŠãŠãŒã¯ãªããã®äºé€æ³ãäžçªæŽ»èºããã®ã¯ã1次äžå®æ¹çšåŒãã®åé¡ãžã®å©çšã§ãã
äžæ¬¡äžå®æ¹çšåŒã®åºç€ã確èª
1次äžå®æ¹çšåŒã§ã¯æ¬¡ã®ãããªåé¡ãåºãŸãã
1次äžå®æ¹çšåŒã®åé¡
\(2x+3y=1\)ãæºããæŽæ°è§£ããã¹ãŠæ±ããã
ãŸãã¯æ¹çšåŒãæºããæŽæ°è§£ã1ã€èŠã€ããŸãã
ãããããå°ããæ°åãªãã°ãå®éã«æ°åãä»£å ¥ããŠæŽæ°è§£ãèŠã€ããŸãã
\(2x-3y=1 \cdots â \)
ãã®æ¹çšåŒã¯\((x,y)=(2,1)\)ã§æãç«ã€ããšãåãããŸãã
\(2 \cdot 2 -3 \cdot 1=1 \cdots â¡\)
\(â -â¡\)
\(2(x-2)-3(y-1)=0\)
ãããå€åœ¢ãããš
\(2(x-2)=3(y-1) \cdots â¢\)
2ãš3ã¯äºãã«çŽ ãªã®ã§ã\(x-2\)ã¯3ã®åæ°ã ãšåãããŸãã
ãã£ãŠãkãæŽæ°ãšããŠã\(xâ2=3k\)ãšè¡šãããšãã§ããŸãã
ãããâ¢ã«ä»£å ¥ãããš
\(2â 3k=3(y-1)\)
\(âŽãy-1=2k\)
ãããã£ãŠãæ±ãã解ã¯
\(x=3k+2, y=2k+1ïŒkã¯æŽæ°ïŒ\)â¯ãçã
ãŠãŒã¯ãªãããçšããŠäžå®æ¹çšåŒã解ã
1次äžå®æ¹çšåŒã®è§£ãæ¹ã解説ããŸããã
ãŠãŒã¯ãªããã®å¿çš
次ã®æ¹çšåŒãæºããæŽæ°è§£ããã¹ãŠæ±ããã
\(275x+61y=1\)
ããã§ãŠãŒã¯ãªããã®äºé€æ³ãéåžžã«æŽ»èºããŸãã
ãŸãã¯275ãš61ã§ãŠãŒã¯ãªããã®äºé€æ³ãèšç®ããŸãã
äœãã1ã«ãªããŸã§ãŠãŒã¯ãªããã®äºé€æ³ãç¹°ãè¿ããŸãã
ããããã¯æå€§å ¬çŽæ°ãæ±ãããšããšã¯ç°ãªãæé ãªã®ã§æ³šç®ã§ãã
äžçªäžã®åŒã«ãäžã®åŒãé ã«ä»£å ¥ããŠãããš
\begin{aligned}
1 &=31-30 \cdot 1 \\
&=31-(61-31 \cdot 1) \cdot 1 \\
&=31 \cdot 2+61 \cdot(-1) \\
&=(275-61 \cdot 4) \cdot 2+61 \cdot(-1) \\
&=275 \cdot 2+61 \cdot(-9)
\end{aligned}
ããã«ã
\(275 \cdot 2+61 \cdot(-9)=1 \cdots â¡\)
ãããã£ãŠã275x+61y=1ã®æŽæ°è§£ã®1ã€ã¯ x=2, y=â9 ã ãšããããŸããã
â ïŒâ¡ãã
\(275(xâ2)+61(y+9)=0\)
\(âŽã275(xâ2)=â61(y+9) \cdots â¢\)
275ãš61ã¯äºãã«çŽ ã ããã\(xâ2\)ã¯61ã®åæ°ãšãããŸãã
ãã£ãŠãkãæŽæ°ãšããŠã\(xâ2=61k\)ãšè¡šãããšãã§ããŸãã
ãããâ¢ã«ä»£å ¥ãããš
\(275â 61k=â61(y+9)\)
\(âŽãy+9=â275k\)
ãããã£ãŠãæ±ãã解ã¯
\(x=61k+2, y=â275kâ9ïŒkã¯æŽæ°)\)
ãŠãŒã¯ãªããã®äºé€æ³ãç·Žç¿åé¡ã
ãããŸã§ãŠãŒã¯ãªããã®äºé€æ³ã«ã€ããŠè§£èª¬ããŠããŸããã
ãŠãŒã¯ãªããã®äºé€æ³ã掻çšããŠåé¡ã解ãç·Žç¿ãããŸãã
ç·Žç¿åé¡â
3465ãš7812ã®æå€§å ¬çŽæ°ãæ±ããã
次ã«1次äžå®æ¹çšåŒã®æŽæ°è§£ãæ±ããåé¡ãç·Žç¿ããŸãããã
ç·Žç¿åé¡â¡
次ã®äžå®æ¹çšåŒãæºããæŽæ°è§£ããã¹ãŠæ±ããã
\(92x+197y=1\)
ãŠãŒã¯ãªããã®äºé€æ³ããŸãšã
ä»åã¯ãŠãŒã¯ãªããã®äºé€æ³ã«ã€ããŠãŸãšããŸããã
ãŠãŒã¯ãªããã®äºé€æ³
ã»ãŠãŒã¯ãªããã®äºé€æ³ã¯ïŒã€ã®æŽæ°ã®æå€§å ¬çŽæ°ãæ±ããèšç®
ã»ãŠãŒã¯ãªããã®äºé€æ³ã®ããæ¹
ã»äžæ¬¡äžå®æ¹çšåŒã§æŽ»èº
ãŠãŒã¯ãªããã®äºé€æ³ãš1次äžå®æ¹çšåŒã¯ããã§è§£èª¬ããŠããŸãã
âãŠãŒã¯ãªããã®äºé€æ³ãš1次äžå®æ¹çšåŒ
ãŠãŒã¯ãªããã®äºé€æ³ã¯èšç®ãè€éãªã®ã§ãé£ãããŠèŠæãšããã€ã¡ãŒãžãäžããŠããŸããŸãã
å®éã«ã¯å²ãæ°ãšäœãããºã©ããŠããã ããªã®ã§ãæ ãŠãã«ãã£ãããšè§£èª¬ãèªãã§èŠãŠãã ããã
ã©ãããŠãæŽæ°ã®æ§è³ªãèŠæãªæ¹ã¯åèæžã®äžå¯§ãªè§£èª¬ãããããããŸãã
å¿ç°æ¶ã® éåã»è«çãæŽæ°ãé¢çœãã»ã©ãããæ¬
Amazon kindleãªãç¡æã§åèæžãèªããïŒ
ã³ã¡ã³ã
ã³ã¡ã³ãäžèŠ§ ïŒ0件ïŒ
é£å°åé¡â ã®çã63ã§ã
ã³ã¡ã³ãããããšãããããŸãïŒå€§äºãªæãééã£ãŠãŸããïŒä¿®æ£ããŸãïŒ