ベクトルの大きさの求め方!なぜ2乗の公式で求められるの?

ベクトルの大きさの求め方!なぜ2乗の公式で求められるの?

[mathjax]

[st-mybox title=”今回解決する悩み” fontawesome=”fa-check-circle” color=”#03A9F4″ bordercolor=”#B3E5FC” bgcolor=”” borderwidth=”4″ borderradius=8″ titleweight=”bold” fontsize=”110″ myclass=”nayami-box” margin=””]

「等しいベクトルとは?」
「ベクトルの大きさって?」

[/st-mybox]

ベクトルの”大きさ”とは長さを表しています。

大きさの求め方は簡単なので必ず押さえておきましょう。

本記事では、ベクトルの大きさを求める公式を解説しています。

目次

ベクトルの大きさと求め方

下図のような大きさと向きで定まるものをベクトルといいます。

有効線分とベクトル

有向線分ABで表されるベクトルを、\(\overrightarrow{ AB }\)と書き表す。

このとき、線分ABの長さをベクトルABの“大きさ”として\(|\overrightarrow{ AB }|\)と表します。

平面ベクトルのとき

平面ベクトルの大きさの求め方を紹介します。

[st-mybox title=”” fontawesome=”” color=”#757575″ bordercolor=”#ccc” bgcolor=”#ffffff” borderwidth=”2″ borderradius=”2″ titleweight=”bold” fontsize=”” myclass=”st-mybox-class” margin=”25px 0 25px 0″]

\(\vec{AB} = (x, y)\)の大きさ\(|\overrightarrow{ AB }|\)は、

\[|\overrightarrow{ AB }|=\sqrt{x^2 + y^2}\]

[/st-mybox]

\(A(0,0),B(3,4)\)とすると\(\vec{AB} = (3, 4)\)の大きさは、

\[|\overrightarrow{ AB }|=\sqrt{3^2 + 4^2}=\sqrt{25}=5\]

したがって、\(\vec{AB} = (3, 4)\)の大きさは5ということが分かりました。

空間ベクトルのとき

空間ベクトルの場合は成分が3つになるので、大きさの求め方も変わります。

[st-mybox title=”” fontawesome=”” color=”#757575″ bordercolor=”#ccc” bgcolor=”#ffffff” borderwidth=”2″ borderradius=”2″ titleweight=”bold” fontsize=”” myclass=”st-mybox-class” margin=”25px 0 25px 0″]

\(\vec{AB} = (x, y, z)\)の大きさ\(|\overrightarrow{ AB }|\)は、

\[|\overrightarrow{ AB }|=\sqrt{x^2 + y^2 +z^2}\]

[/st-mybox]

\(A(0,0,0),B(3,4,5)\)とすると\(\vec{AB} = (3, 4,5)\)の大きさは、

\[|\overrightarrow{ AB }|=\sqrt{3^2 + 4^2 +5^2}=\sqrt{50}=5\sqrt{2}\]

したがって、\(\vec{AB} = (3, 4 ,5)\)の大きさは\(5\sqrt{2}\)ということが分かりました。

単位ベクトルは大きさ1

単位ベクトルとは、大きさが1のベクトルです。

単位ベクトルの具体例を見てみましょう。

\(\displaystyle A(0,0),B(\frac{3}{5},\frac{4}{5})\)とすると\(\displaystyle \vec{AB} = (\frac{3}{5}, \frac{4}{5})\)です。

このとき\(\displaystyle \vec{AB} = (\frac{3}{5}, \frac{4}{5})\)の大きさは、

\[\displaystyle |\overrightarrow{ AB }|=\sqrt{(\frac{3}{5})^2 + (\frac{4}{5})^2}=\sqrt{\frac{9}{25} + \frac{16}{25}}=1\]

有効線分とベクトル

したがって、\(\displaystyle \vec{AB} = (\frac{3}{5}, \frac{4}{5})\)は大きさが1なので単位ベクトルです。

大きさの等しいベクトルとは?

\(\vec{a}と\vec{b}\)の向き大きさが等しいとき、

2つのベクトルは等しいといい、\(\vec{a}=\vec{b}\)と書く。

大きさも向きも等しいので、等しい2つのベクトルは平行移動するとぴったりと重ねることができます。

等しいベクトルとは?

なぜベクトルの大きさは2乗?

ベクトルの大きさは先に2乗して、あとから2乗を外す求め方もあります。

[st-mybox title=”” fontawesome=”” color=”#757575″ bordercolor=”#ccc” bgcolor=”#ffffff” borderwidth=”2″ borderradius=”2″ titleweight=”bold” fontsize=”” myclass=”st-mybox-class” margin=”25px 0 25px 0″]

\(A(0,0),B(3,4)\)とすると

\[|\overrightarrow{ AB }|^{2}=3^2 + 4^2=25\]

\(|\overrightarrow{ AB }| \ge 0\)なので、

\[|\overrightarrow{ AB }|=5\]

[/st-mybox]

シータ

新しい公式に見えるけどさっきと同じだよ

先ほど解説した公式では、ルートを使いましたがこの公式ではルートを後回しにできます。

ベクトルの大きさ まとめ

今回はベクトルの大きさについてまとめました。

[st-marumozi fontawesome=”” bgcolor=”#FFB74D” bordercolor=”” color=”#fff” radius=”30″ margin=”0 10px 0 0″ myclass=””]ベクトル大きさ[/st-marumozi]

平面ベクトルの大きさの求め方

[st-mybox title=”” fontawesome=”” color=”#757575″ bordercolor=”#ccc” bgcolor=”#ffffff” borderwidth=”2″ borderradius=”2″ titleweight=”bold” fontsize=”” myclass=”st-mybox-class” margin=”25px 0 25px 0″]

\(\vec{AB} = (x, y)\)の大きさ\(|\overrightarrow{ AB }|\)は、

\[|\overrightarrow{ AB }|=\sqrt{x^2 + y^2}\]

[/st-mybox]

空間ベクトルの大きさの求め方

[st-mybox title=”” fontawesome=”” color=”#757575″ bordercolor=”#ccc” bgcolor=”#ffffff” borderwidth=”2″ borderradius=”2″ titleweight=”bold” fontsize=”” myclass=”st-mybox-class” margin=”25px 0 25px 0″]

\(\vec{AB} = (x, y, z)\)の大きさ\(|\overrightarrow{ AB }|\)は、

\[|\overrightarrow{ AB }|=\sqrt{x^2 + y^2 +z^2}\]

[/st-mybox]

ベクトルが苦手な方は多いと思いますが、慣れるまでは矢印だと思えば良いです。

まずは公式をしっかりと覚えてからが勝負です。

教科書に内容に沿った解説記事を挙げているので、定期試験前に確認してください。

それでは最後までご覧いただきありがとうございました。

みんなの努力が報われますように!

目次